

cssref v1.0

CSS Property Reference

Mastering Cascading Style Sheets involves knowing how to use a large number of CSS properties that control
the appearance of text, images, tables, and forms. To help you in your quest, this appendix gives you a summary of
the properties and values you'll use to create your own styles. This list covers nearly all of the CSS 2.1 standard
propertiesthe ones that most Web browsers support.

Note: This appendix leaves out properties that no (or hardly any) browsers recognize. Otherwise, the following

descriptions mention the browsers with which each property works. For full details straight from the horse's mouth,
visit the World Wide Web Consortium's CSS 2.1 specification at www.w3.org/TR/CSS21/.

A.1. CSS Values

Every CSS property has a corresponding value. The
color property, which formats font color, requires a
color value to specify which color you want to use. The
property color: #FFF; creates white text. Different
properties require different types of values, but they
come in four basic categories: colors, lengths and sizes,
keywords, and URLs.

Colors
You can assign colors to many different properties,

including those for font, background, and borders. CSS
provides several different ways to specify color.

A.1.1.1. Keywords
A color keyword is simply the name of the color,

like white or black. There are currently 17 recognized
color keywords: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, orange, purple, red, silver,
teal, white, and yellow. Some browsers accept more
keywords, and CSS 3 promises to offer many more in
the future (http://www.w3.org/TR/css3-color/).

A.1.1.2. RGB values
Computer monitors create colors using a mixture of

red, green, and blue light. These RGB values can create
(nearly) the full spectrum of color. Almost every
design, illustration, and graphics program lets you
specify colors using RGB, so it's easy to transfer a color
from one of those programs to a CSS property. CSS
represents RGB values in several ways:

 Hex values. The method most commonly used
on the Web for identifying color, hex color
values consist of three two-character numbers in
the hexadecimal (that is, base 16) system.
#FF0033 represents an RGB value composed of
red (FF, which equals 255 in normal, base 10
numbers), green (00), and blue (33). The # tells
CSS to expect hex numbers ahead, and it's
required. If you leave off the #, a Web browser
won't display the correct color.

Tip: If all three two-digit values have repeated

digits, you can shorten the hex value by using just the
first number of each pair. For example #361 means the
same thing as #336611.

 RGB percentages. You can also specify a color

using percentage values, like this: rgb(100%,
0%, 33%). You can get these numbers from
image editing and design programs that can
define colors using percentages (which is most
of them).

 Decimal values. Finally, you can use decimal
RGB values to specify a color. The format is
similar to the percentage option, but you use a
number from 0 to 255 to indicate each color:
rgb(255, 0, 33).

It doesn't matter which method you usethey all
work. For consistency's sake, you should pick one way
of specifying RGB values and stick with it. The
Windows and Mac operating systems both have color
pickers which let you find the perfect color from a
palette of millions, and then show you the RGB value.
Alternatively, you can use this free online color picker:
www.ficml.org/jemimap/style/color/wheel.html.

Tip: Many Mac programs such as TextEdit, let you

open the color picker by pressing -Shift-C.

Lengths and Sizes
CSS provides many different ways to measure the

size of type, the width of a box, or the thickness of a
borderline. To indicate type size, you can use inches,
picas, points, centimeters, millimeters, em-heights, ex-
heights, pixels, and percentages. However, even though
there are a lot of options, most don't apply to the world
of onscreen display, for reasons discussed in Section
6.2. You really need to think about these three only
pixels, ems, and percentages.

A.1.2.1. Pixels
A pixel is a single dot on a computer screen. Pixels

give you a consistent method of identifying lengths and
font sizes from computer to computer: 72 pixels on one

1

http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/css3-color/
http://www.ficml.org/jemimap/style/color/wheel.html

cssref v1.0

monitor is 72 pixels on another monitor. That doesn't
mean the actual, real-world length is the same for
everyone, though. Since people set their monitors to
different resolutions800 x 600, 1024 x 768, 1600 x
1200, or whatever72 pixels may take up 1 inch on one
monitor, but only half an inch for someone else.
Nevertheless, pixels give you the most consistent
control over presentation.

Note: There's just one drawback to using pixels:

folks using Internet Explorer 6 or earlier can't resize any
type that's sized using pixels. If your text is too small
for someone's eyes, the visitor won't be able to enlarge
it to make it more readable. (See Section 6.2.2 for more
on pixel measurements.)

A.1.2.2. Ems
Originally from the typographic world, an em is a

unit that represents the height of the capital letter M for
a particular font. In Web pages, one em is the height of
the Web browser's base text size, which is usually 16
pixels. However, anyone can change that base size
setting, so 1em may be 16 pixels for one person, but 24
pixels in someone else's browser. In other words, ems
are a relative unit of measurement.

In addition to the browser's initial font size setting,
ems can inherit size information from containing tags.
A type size of .9em would make text about 14 pixels
tall on most browsers with a 16 pixel base size. But if
you have a <p> tag with a font size of .9ems, and then a
 tag with a font size of .9ems inside that <p>
tag, that tag's em size isn't 14 pixelsit's 12
pixels (16 x .9 x .9). So keep inheritance in mind when
you use em values.

A.1.2.3. Percentages
CSS uses percentages for many different purposes,

like sizing text, determining the width or height of an
element, and specifying the placement of an image in
the background of a style, to name a few. Now, what
you're taking a percentage of varies from property to
property. For font sizes, the percentage is calculated
based on the text's inherited value. Say the general font
size for a paragraph is 16 pixels tall. If you created a
style for one special paragraph and set its font size to
200 percent, that text is displayed at 32 pixels tall.
When applied to width, however, percentages are
calculated based on the width of the page, or on another
parent element with a set width. You specify a
percentage with a number followed by the percent sign:
100%.

Keywords
Instead of color or size, many properties have their

own specific values that affect how the properties
display and are represented by keywords. The text-align
property, which aligns text on screen, can take one of
four keywords: right, left, center, and justify. Since

keywords vary from property to property, read the
property descriptions that follow to learn the keyword
appropriate to each property.

One keyword, however, is shared by all properties
inherit. This keyword lets you force a style to inherit a
value from a parent element. You can use the inherit
keyword on any property. This keyword gives you the
power to make styles inherit properties that aren't
normally inherited from parent tags. For instance, say
you use the text-decoration property to underline a
paragraph. Other tags, such as and ,
inside the <p> tag don't inherit this value, but you can
force them to do so with the inherit keyword:

 em, strong {
 text-decoration: inherit;
 }
That way, the em and strong tags display the same

text-decoration value as their parent <p> tagunderline,
in this case. So the and elements of the
paragraph each get underlined as does the entire
paragraph so you'd end up with double underlines under
emphasized text (a good reason why that property isn't
inherited normally). If you change the <p> tag's text-
decoration value to overline instead of underline, the
 and tags inherit that value and display
overlines, too.

Note: Underline/overline isn't a very useful

example, mainly because inherit isn't a very useful
value. But this wouldn't be a Missing Manual if it didn't
give you all the facts.

URLs
URL values let you point to another file on the Web.

For example, the background-image property accepts a
URLthe path to the file on the Webas its value, which
lets you assign a graphic file as a background for a page
element. This technique is handy for adding a tiling
image in the background of a page or for using your
own graphic for bulleted lists (see Section 8.2).

In CSS, you specify an URL like this:
url(images/tile.gif). A style that adds an image called
tile.gif to the background of the page would look like
this:

body { background-image: url(images/tile.gif); }
Unlike HTML, in CSS, quotes around the URL are

optional, so url("images/tile.gif"), url('images/tile.gif'),
and url(images/tile.gif) are equivalent.

Note: The URL itself is just like the HTML href

attribute used for links, meaning you can use an
absolute URL like
http://www.missingmanuals.com/images/tile.gif, a root-
relative path like /images/tile.gif, or a document-
relative URL like ../../images/tile.gif. See Section 8.3
for the full story on these kinds of paths.

2

http://www.missingmanuals.com/images/tile.gif

cssref v1.0

A.2. Text Properties

The following properties affect how text is formatted
on a Web page. Since most of the properties in this
category are inherited, you don't necessarily have to
apply them to tags specifically intended for text (like
the <p> tag). You can apply these properties to the
<body> tag, so that other tags inherit and use the same
settings. This technique is a quick way to create an
overall font, color, and so on for a page or section.

color (inherited)
Sets the color of text. Since it's inherited, if you set

the color of the <body> tag to red, for example, all text
inside of the bodyand all other tags inside the <body>
tagis red, too.

 Values: any valid color value
 Example: color: #FFFF33;

Note: The preset link colors for the <a> tag override

color inheritance. In the above example, any links
inside the <body> tag would still be standard hyperlink
blue. See Section 9.1 for ways to change preset link
colors.

font (inherited)
This is a shortcut method for cramming the

following text properties into a single style declaration:
font-style, font-variant, font-weight, font-size, line-
height, and font-family. (Read on for the individual
descriptions.)

You must separate each value by a space and include
at least font-size and font-family, and those two
properties must be the last two items in the declaration.
The others are optional. If you don't set a property, the
browser uses its own preset value, potentially
overriding inherited properties.

 Values: Any value that's valid for the specific
font property. When including a line-height, add
a slash followed by the line-height after the font
size like this: 1.25em/150%.

 Example: font: italic small-caps bold
1.25em/150% Arial, Helvetica, sans-serif;

font-family (inherited)
Specifies the font the browser should use to display

text. Fonts are usually specified as a series of three to
four options to accommodate the fact that a particular
font may not be installed on a visitor's computer. See
Section 6.1.1.

 Values: A comma-separated list of font names.
When a font has a space in its name, surround
that font name with quotes. The last font listed is
usually a generic font type instructing browsers
to choose a suitable font if the other listed fonts
aren't available: serif, sans-serif, monotype,
fantasy, or cursive.

 Example: font-family: "Lucida Grande", Arial,
sans-serif;

font-size (inherited)
Sets the size of text. This property is inherited,

which can lead to some weird behaviors when using
relative length measurements like percentages and ems.

 Values: Any valid CSS measurement unit
(Section A.1.1.1), plus the following keywords:
xx-small, x-small, small, medium, large, x-large,
xx-large, larger, and smaller. Medium represents
the Web browser's normal, preset font size, and
the other sizes are multiples of medium. The
exact numbers depend on the browser, but
they're generally a factor of 1.2. For example,
large is 1.2 times as big as medium. Due to the
uncertainty of how each browser handles these
keywords, many designers use pixels, ems, or
percentages instead.

 Example: font-size: 1.25em;

Note: When the font-size property is inherited from
another tag, these keywords multiply the inherited font
size by the same factor (1.2 in most browsers).

font-style (inherited)
Makes text italic. Applied to italic text, it turns it

back to plain text. The options italic and oblique are
functionally the same.

 Values: italic, oblique, normal
 Example: font-style: italic;

font-variant (inherited)
Makes text appear in small caps, like this: SPECIAL

PRESENTATION. The value normal removes small
caps from text already formatted that way.

 Values: small-caps, normal
 Example: font-variant: small-caps;

font-weight (inherited)
Makes text bold, or removes bolding from text

already formatted that way.
 Values: CSS actually provides 14 different font-

weight keywords, but only a couple actually
work with today's browsers and computer
systemsbold and normal.

 Example: font-weight: bold;

letter-spacing (inherited)
Adjusts the space between letters to spread out

letters (adding spacing between each) or cram letters
together (removing space).

 Values: Any valid CSS measurement unit,
though ems and pixels are most common. For
this property, percentages don't work in most
browsers. Use a positive value to increase the
space between letters and a negative value to

3

cssref v1.0

remove space (scrunch letters together). The
value normal resets letter-spacing to its regular
browser value of 0.

 Examples: letter-spacing: -1px; letter-spacing:
2em;

line-height (inherited)
Adjusts space between lines of text in a paragraph

(often called line spacing in word processing
programs). The normal line height is 120 percent of the
size of the text (Section 6.4).

 Values: Most valid CSS lengths (Section
A.1.1.1), though ems and pixels and percentages
are most common.

 Example: line-height: 200%;

text-align (inherited)
Positions a block of text to the left, right, or center of

the page or container element.
 Values: left, center, right, justify (the justify

option often makes text difficult to read on
monitors).

 Example: text-align: center;

text-decoration
Adds lines above, under, and/or through text.

Underlining is common with links, so it's usually a
good idea not to underline text that isn't a link. The
color of the underline, overline, or strike-through line is
the same as the font color of the tag being styled. The
property also supports a blink value that makes text
flash off and on obnoxiously.

 Values: underline, overline, line-through, blink,
none. The none value turns off all decoration.
Use this to hide the underline that normally
appears under links. You can also add multiple
decorations by listing the name of each type
(except none) separated by a space.

 Example: text-decoration: underline overline
line-through;

text-indent (inherited)
Sets the indent size of the first line of a block of text.

The first line can be indented (as in many printed
books) or outdented, so that the first line hangs off and
over the left edge of the rest of the text.

 Values: Any valid CSS measurement unit. Ems
and pixels are most common; percentages
behave differently than with the font-size
property. Here, percentages are based on the
width of the box containing the text, which can
be the width of the entire browser window. So
50% would indent the first line half of the way
across the window (see Section 7.5.1 for a
detailed explanation). To outdent (hang the first
line off the left edge), use a negative value. This
technique works well in conjunction with a
positive left-margin property (Section A.1.1),

which indents the left side of the other lines of
text a set amount.

 Example: text-indent: 3em;

text-transform (inherited)
Changes the capitalization of text, so text appears in

all uppercase letters, all lowercase, or only the first
letter of each word capitalized.

 Values: uppercase, lowercase, capitalize, none.
The none option returns the text to whatever
case is in the actual HTML code. If aBCDefg
are the actual letters typed in HTML, then none
removes any other inherited case set by an
ancestor tag and displays aBCDefg onscreen.

 Example: text-transform: uppercase;

vertical-align
Sets the baseline of an inline element relative to the

baseline of the surrounding contents. With it, you can
make a character appear slightly above or below
surrounding text. Use this to create superscript
characters like ™, ®, or ©. When applied to a table
cell, the values top, middle, bottom, and baseline
control the vertical placement of content inside the cell
(Section 10.2.1).

 Values: baseline, sub, super, top, text-top,
middle, bottom, text-bottom, a percentage value,
or an absolute value (like pixels or ems).
Percentages are calculated based on the
element's line-height value (Section A.1.1).

 Examples: vertical-align: top; vertical-align: -
5px; vertical-align: 75%;

white-space
Controls how the browser displays space characters

in the HTML code. Normally, if you include more than
one space between words"Hello Dave"a Web browser
displays only one space"Hello Dave." You can preserve
any white space exactly as is in the HTML using the pre
value, which does the same as the HTML <pre> tag. In
addition, Web browsers will split a line of text at a
space, if the line won't fit within the window's width.
To prevent text from wrapping, use the nowrap value.
But the nowrap value makes all of the paragraph's text
stay on one line, so don't use it with long paragraphs
(unless you like the idea of making your visitors scroll
endlessly to the right).

 Values: nowrap, pre, normal. Two other
valuespre-line and pre-wrapdon't work in many
browsers.

 Example: white-space: pre;

word-spacing (inherited)
Works like the letter-spacing property (Section

A.1.1), but instead of letters, it adjusts space between
words.

 Values: Any valid CSS measurement unit,
though ems and pixels are most common;

4

cssref v1.0

percentages don't work in most browsers. Use
a positive value to increase the space between
words and a negative value to remove space
(scrunch words together). The value normal
resets word spacing to its regular browser
value of 0.

 Examples: word-spacing: -1px; word-
spacing: 2em;

A.3. List Properties

The following properties affect the formatting of
bulleted lists () and numbered lists ().

list-style (inherited)
This property is a shorthand method of specifying

the three properties listed next. You can include a value
for one or more of those properties, separating each by
a space. You can even use this property as a shortcut for
writing a single property and save a couple of
keystrokes: list-style: outside, instead of list-style-
position: outside. If you specify both a type and an
image, a Web browser will display the bullet type (disc,
square, and so on) only if it can't find the image. This
way, if the path to your custom bullet image doesn't
work, you don't end up with a bulletless bulleted list.

 Values: Any valid value for list-style-type, list-
style-image, and/or list-style-position.

 Example: list-style: disc url(images/bullet.gif)
inside;

list-style-image (inherited)
Specifies an image to use for a bullet in a bulleted

list.
 Values: an URL value (Section A.1.1) or none.
 Example: list-style-image:

url(images/bullet.gif);

Tip: The background-image property does the
custom bullet job just as well and offers more control
(see Section 8.2).

 list-style-position (inherited)
Positions the bullets or numbers in a list. These

markers can appear outside of the text, hanging off to
the left, or inside the text (exactly where the first letter
of the first line normally begins). The outside position
is how Web browsers normally display bullets and
numbers.

 Values: inside, outside
 Example: list-style: inside;

list-style-type (inherited)
Sets the type of bullet for a listround, square, roman

numeral, and so on. You can theoretically turn an

unordered (bulleted) list into an ordered (numbered) list
by changing the list-style-type property, but it doesn't
work in all browsers (including Internet Explorer for
Windows). Use the none option to completely remove
bullets or numbers from the list.

 Values: disc, circle, square, decimal, decimal-
leading-zero, upper-alpha, lower-alpha, upper-
roman, lower-roman, lower-greek, none

 Example: list-style-type: square;

A.4. Padding, Borders, and Margins

The following properties control the space around an
element, and let you add border lines to a style.

border
Draws a line around the four edges of an element.
 Values: The width (thickness) of the border line

in any valid CSS measurement unit (except
percentages).

You can also specify a style for the line: solid,
dotted, dashed, double, groove, ridge, inset, outset,
none, and hidden. (See Figure 7-7 in Section 7.3 for
an illustration of the different styles.) The none and
hidden values do the same thingremove any border.
Finally, you can specify a color using any valid CSS
color type (a keyword like green or a hex number
like #33fc44).
 Example: border: 2px solid #f33;

border-top, border-right, border-bottom, border-

left
Adds a border to a single edge. For example, border-

top adds a border to the top of the element.
 Values: same as for border.
 Example: border-left: 1em dashed red;

border-color
Defines the color used for all four borders.
 Values: Any valid CSS color type (a keyword

like green or a hex number like #33fc44).
 Example: border-color: rgb(255,34,100);

border-top-color, border-right-color, border-

bottom-color, border-left-color
Functions just like the border-color property but sets

color for only one edge. Use these properties to
override the color set by the border property. In this
way, you can customize the color for an individual edge
while using a more generic border style to define the
basic size and style of all four edges.

 Values: see border-color above.
 Example: border-left-color: #333;

border-style
Defines the style used for all four borders.

5

cssref v1.0

 Values: One of these key words: solid, dotted,
dashed, double, groove, ridge, inset, outset,
none, and hidden. See Figure 7-7 in Section 7.3
for an illustration of the different styles. The
none and hidden values act identicallythey
remove any border.

 Example: border-style: inset;

border-top-style, border-right-style, border-

bottom-style, border-left-style
Functions just like the border-style property, but

applies only to one edge.
 Values: see border-style above.
 Example: border-top-style: none;

border-width
Defines the width or thickness of the line used to

draw all four borders.
 Values: Any valid CSS measurement unit except

percentages. The most common are ems and
pixels.

 Example: border-width: 1px;

border-top-width, border-right-width, border-

bottom-width, border-left-width
Functions just like the border-width property but

applies only to one edge.
 Values: see border-width above.
 Example: border-bottom-width: 3em;

outline
This property is a shorthand way to combine outline-

color, outline-style, and out-line-width (listed next). An
outline works just like a border, except the outline takes
up no space (that is, it doesn't add to the width or height
of an element), and it applies to all four edges. It's
intended more as a way of highlighting something on a
page than as a design detail. Outline works in Firefox,
Safari, and Opera, but not in Internet Explorer.

 Values: The same as for border with one
exceptionsee outline-color next.

 Example: outline: 3px solid #F33;

outline-color
Specifies the color for an outline (see outline above).
 Values: Any valid CSS color, plus the value

invert, which merely reverses the color the
outline is sitting on. If the outline is drawn on a
white background, the invert value makes the
outline black. Works just like border-color
(Section A.1.1).

 Example: outline-color: invert;

outline-style
Specifies the type of line for the outline dotted,

solid, dashed, and so on.
 Values: Same as border-style (Section A.1.1).
 Example: outline-style: dashed;

outline-width
Specifies the thickness of the outline. Works just

like border-width (Section A.1.1).
 Values: Any valid CSS measurement unit except

percentages. The most common are ems and
pixels.

 Example: outline-width: 3px;

padding
Sets the amount of space between the content and

border and edge of the background. Use it to add empty
space around text, images, or other content. (See Figure
7-1 in Section 7.2 for an illustration.)

 Values: Any valid CSS measurement unit, like
pixels or ems. Percentage values are based on
the width of the containing element. A headline
that's a child of the <body> tag uses the width of
the browser window to calculate a percentage
value, so a padding of 20 percent adds 20
percent of the window's width. If the visitor
resizes his browser, the padding size changes
proportionately. You can specify the padding for
all four edges by using a single value, or set
individual padding sizes per edge using this
order: top, right, bottom, left.

 Examples: padding: 20px; padding: 2em 3em
2.5em 0;

padding-top
Works just like the padding property, but sets

padding for top edge only.
 Example: padding-top: 20px;

padding-right
Works just like the padding property, but sets

padding for right edge only.
 Example: padding-right: 20px;

padding-bottom
Works just like the padding property, but sets

padding for bottom edge only.
 Example: padding-bottom: 20px;

padding-left
Works just like the padding property, but sets

padding for left edge only.
 Example: padding-left: 20px;

margin
Sets the amount of space between an element's

border and the margin of other elements (see Figure 7-1
in Section 7.2). It lets you add white space between two
elementsbetween one picture and another picture, or
between a sidebar and the main content area of a page.

Note: Vertical margins between elements can

collapse. That is, browsers use only the top or bottom

6

cssref v1.0

margin and ignore the other, creating a smaller gap than
expected (see Section 7.2.2).

 Values: Any valid CSS measurement unit like

pixels or ems. Percentage values are based on
the width of the containing element. A headline
that's a child of the body tag uses the width of
the browser window to calculate a percentage
value, so a margin of 10 percent adds 10 percent
of the window's width to the edges of the
headline. If the visitor resizes his browser, the
margin size changes. As with padding, you
specify the margin for all four edges using a
single value, or set individual margins in this
order: top, right, bottom, left.

 Examples: margin: 20px; margin: 2em 3em
2.5em 0;

margin-top
Works just like the margin property, but sets margin

for top edge only.
 Example: margin-top: 20px;

margin-right
Works just like the margin property, but sets margin

for right edge only.
 Example: margin-right: 20px;

margin-bottom
Works just like the margin property, but sets margin

for bottom edge only.
 Example: margin-bottom: 20px;

margin-left
Works just like the margin property, but sets margin

for left edge only.
 Example: margin-left: 20px;

A.5. Backgrounds

CSS provides several properties for controlling the
background of an element, including coloring the
background, placing an image behind an element, and
controlling how that background image is positioned.

background
Provides a shorthand method of specifying

properties that appear in the background of an element,
like a color, an image, and the placement of that image.
It combines the five background properties (described
next) into one compact line, so you can get the same
effect with much less typing. However, if you don't set
one of the properties, browsers use that property's
normal value instead. For example, if you don't specify
how a background image should repeat, browsers will
tile that image from left to right and top to bottom (see
Section 8.3).

 Values: The same values used for the
background properties listed next. The order of
the properties isn't important (except for
positioning as described below) but usually
follow the order of background-color,
background-image, background-repeat,
background-attachment, background-position.

 Example: background: #333
url(images/logo.gif) no-repeat fixed left top;

background-attachment
Specifies how a background image reacts when your

visitor scrolls the page. The image either scrolls along
with the rest of the content or remains in place. You can
add a logo to the upper-left corner of a very long Web
page, using the background-attachment property's fixed
value, and make that image stay in the upper-left corner
even when the page is scrolled. (In Internet Explorer 6
and earlier, this property works only for the <body>
tag.)

 Values: scroll or fixed. Scroll is the normal
behavior: An image will scroll off the screen
along with text. Fixed locks the image in place.

 Example: background-attachment: fixed;

background-color
Adds a color to the background of a style. The

background sits underneath the border and underneath a
background image, a fact to keep in mind if you use one
of the non-solid border styles like dashed or dotted. In
these cases, the background color shows through the
gaps between the dashes or dots.

 Values: any valid color value (Section A.1).
 Example: background-color: #FFF;

background-image
Places an image into the background of a style.

Other page elements sit on top of the background
image, so make sure that text is legible where it
overlaps the image. You can always use padding to
move content away from the image, too. The image
tiles from left to right and top to bottom, unless you set
the background-repeat property as well.

 Values: The URL of an image.
 Examples: background-image:

url(images/photo.jpg); background-image:
url(http://www.example.org/photo.jpg);

background-position
Controls the placement of an image in the

background of a page element. Unless you specify
otherwise, an image begins in the element's top-left
corner. If the image tiles, background-position controls
the image's start point (see background-repeat next). If
you position an image in the center of an element, the
browser puts the image there, and then tiles the image
up and to the left and down and to the right. In many
cases, the exact placement of an image doesn't cause a

7

http://www.example.org/photo.jpg

cssref v1.0

visible difference in the background tiling, but it lets
you make subtle changes to the positioning of a pattern
in the background.

 Values: You can use any valid CSS
measurement unit like pixels or ems, as well as
keywords or percentages. The values come in
pairs, with the first being the horizontal position,
and the second being vertical. Keywords include
left, center, and right for horizontal positioning
and top, center, and bottom for vertical. Pixel
and em values are calculated from the top-left
corner of the element, so to place a graphic 5
pixels from the left edge and 10 pixels from the
top, you'd use a value of 5px 10px.

Percentage values map one point on the image to
one point in the background of the element,
calculated by the specified percentage from the left
and top edges of the image and the specified
percentage from the left and top edges of the
element. 50% 50% places the point that's 50 percent
across and 50 percent down the image on top of the
point that's 50 percent across and 50 percent down
the element. In other words, it puts the image
directly in the middle of the element (see Section
8.4.3). You can mix and match these Values: If you
want, use a pixel value for horizontal placement and
a percentage value for vertical placement.
 Examples: background-position: left top;

background-position: 1em 3em; background-
position: 10px 50%;

background-repeat
Controls whether, or how, a background image

repeats. Normally, background images tile from the top
left to the bottom right, filling the element's entire
background.

 Values: repeat, no-repeat, repeat-x, repeat-y.
The repeat option is the normal methodtiling left
to right, top to bottom. No-repeat places the
image a single time in the background with no
tiling. Repeat-x tiles the image top to bottom
onlyperfect for adding a graphical sidebar.
Repeat-y tiles the image from left to right only,
so you can add a graphical bar to an element's
top, middle, or bottom.

 Example: background-repeat: no-repeat;

A.6. Page Layout Properties

The following properties control the placement and
size of elements on a Web page.

bottom
This property is used with absolute, relative, and

fixed positioning (see Section A.1.1). When used with
absolute or fixed positioning, bottom determines the
position of the bottom edge of the style relative to the

bottom edge of its closest positioned ancestor. If the
styled element isn't inside of any positioned tags, then
the placement is relative to the bottom edge of the
browser window. You can use this property to place a
footnote at the bottom of the browser window. When
used with relative positioning, the placement is
calculated from the element's bottom edge (prior to
positioning). See Section 12.1.2.

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages. Percentages are
calculated based on the width of the containing
element.

 Example: bottom: 5em;

Note: Internet Explorer 6 and earlier can have a
problem when positioning an element using the bottom
property. See Section 12.1.4 for details.

clear
Prevents an element from wrapping around a floated

element. Instead, the cleared element drops below the
bottom of the floated element.

 Values: left, right, both, none. The left option
means the element can't wrap around left-floated
elements. Similarly, right drops the element
below any right-floated items. The both value
prevents an element from wrapping around
either left-or right-floated elements. None turns
the property off, so you use it to override a
previously set clear property. This trick comes in
handy when a particular tag has a style that
drops below a floated element but you want the
tag to wrap in just one case. Create a more
specific style (Section 5.3) to override the float
for that one tag.

 Example: clear: both;

clip
Creates a rectangular window that reveals part of an

element. If you had a picture of your high-school
graduating class, and the class bully was standing on
the far right edge of the photo, you could create a
display area that crops out the image of your tormentor.
The full image is still intact, but the clipping area only
displays the bully free portion of it. The clip property is
most effective when used with JavaScript programming
to animate the clip. You can start with a small clipping
area and expand it until the full photo is revealed.

 Values: Coordinates of a rectangular box.
Enclose the coordinates in parentheses and
precede them by the keyword rect, like so:
rect(5px,110px,40px,10px);.

Here's how the order of these coordinates works:
The first number indicates the top offsetthe top edge
of the clipping window. In this example, the offset is
5px, so everything in the first four rows of pixels is
hidden. The last number is the left offsetthe left edge

8

cssref v1.0

of the clipping window. In this example, the offset is
10px, so everything to the left (the first 9 pixels of
the element) is hidden. The second number is the
width of the clipping window plus the last number;
if the left edge of the clip is 10 pixels and you want
the visible area to be 100 pixels, the second number
would be 110px. The third number is the height of
the clipping region plus the top offset (the first
number). So, in this example, the clipping box is 30
pixels tall (30px + 10px = 40px).
 Example: clip: rect(5px,110px,40px,10px);

Tip: Since the order of the coordinates is a little

strange, most designers like to start with the first and
last numbers, and then compute the two other numbers
from them.

display
Determines the kind of box used to display a page

elementblock-level or inline (Section 7.2.4). Use it to
override how a browser usually displays a particular
element. You can make a paragraph (block-level
element) display without line breaks above and below
itexactly like, say, a link (inline element).

 Values: block, inline, none. The display property
accepts 17 values, most of which have no effect
in the browsers available today. Block, inline,
and none, however, work in almost all browsers.
Block forces a line break above and below an
element, just like other block-level elements
(like paragraphs and headers). Inline causes an
element to display on the same line as
surrounding elements (just as text within a
 tag appears right on the same line as
other text). None makes the element completely
disappear from the page. Then, you can make
the element reappear with some JavaScript
programming or the :hover pseudo-class (see
Section 3.1).

 Example: display: block;

float
Moves (floats) an element to the left or right edge of

the browser window, or, if the floated element's inside
another element, to the left or right edge of that
containing element. Elements that appear after the
floated element move up to fill the space to the right
(for left floats) or left (for right floats), and then wrap
around the floated element. Use floats for simple
effects, like moving an image to one side of the page, or
for very complex layouts like those described in
Chapter 11.

Values: left, right, none. None turns off floating
entirely, which comes in handy when a particular tag
has a style with a left or right float applied to it, and you
want to create a more specific style to override the float
for that one tag.

Example: float: left;

height
Sets the height of the content areathe area of an

element's box that contains content like text, images, or
other tags. The element's actual onscreen height is the
total of height, top and bottom margins, top and bottom
padding, and top and bottom borders.

 Values: Any valid CSS measurement unit such
as pixels, ems, or percentages. Percentages are
calculated based on the height of the containing
element.

 Example: height: 50%;

Note: Sometimes, your content ends up taller than
the set heightif you type a lot of text, for instance, or
your visitor increases text size in her browser. Browsers
handle this situation differently: IE 6 and earlier simply
make the box bigger, while other browsers make the
content extend outside of the box. The overflow
property controls what happens in this case (see Section
7.5.2).

left
When used with absolute or fixed positioning

(Section 12.1), this property determines the position of
the left edge of the style relative to the left edge of its
closest positioned ancestor. If the styled element isn't
inside of any positioned tags, then the placement is
relative to the left edge of the browser window. You
can use this property to place an image 20 pixels from
the left edge of the browser window. When used with
relative positioning, the placement is calculated from
the element's left edge (prior to positioning).

 Values: Any valid CSS measurement unit such
as pixels, ems, or percentages.

 Example: left: 5em;

max-height
Sets the maximum height for an element. That is, the

element's box may be shorter than this setting, but it
can't be any taller. If the element's contents are taller
than the max-height setting, they overflow the box. You
can control what happens to the excess using the
overflow property (Section 7.5.2). Internet Explorer 6
(and earlier) doesn't understand the max-height
property.

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages. Browsers calculate
percentages based on the height of the
containing element.

 Example: max-height: 100px;

max-width
Sets the maximum width for an element. The

element's box can be narrower than this setting, but no
wider. If the element's contents are wider than the max-

9

cssref v1.0

width setting, they overflow the box, which you can
control with the overflow property (Section 7.5.2). You
mostly use max-width in liquid layouts (Section 11.1)
to make sure a page design doesn't become unreadably
wide on very large monitors. This property doesn't work
in Internet Explorer 6 (or in earlier versions).

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages. Percentages are
calculated based on the width of the containing
element.

 Example: max-width: 950px;

min-height
Sets the minimum height for an element. The

element's box may be taller than this setting, but it can't
be shorter. If the element's contents aren't as tall as the
min-height setting, the box's height shrinks to meet the
min-height value. Internet Explorer 6 (and earlier)
doesn't recognize this property.

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages. Percentages are
based on the containing element's height.

 Example: min-height: 20em;

min-width
Sets the minimum width for an element. The

element's box may be wider than this setting, but it can't
be narrower. If the element's contents aren't as wide as
the min-width value, the box simply gets as thin as the
min-width setting. You can also use min-width in liquid
layouts, so that the design doesn't disintegrate at smaller
window widths. When the browser window is thinner
than min-width, it adds horizontal scroll bars. Internet
Explorer 6 (and earlier) doesn't understand this
property.

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages. Percentages are
based on the containing element's width.

 Example: min-width: 760px;

Note: You usually use the max-width and min-width
properties in conjunction when creating liquid layouts.
See Chapter 11 (Section 11.4.3).

overflow
Dictates what should happen to text that overflows

its content area, like a photo that's wider than the value
set for the width property.

Note: IE 6 (and earlier) handles overflow situations

differently than other browsers. See Section 7.5.2.

 Values: visible, hidden, scroll, auto. Visible
makes the overflowing content extend outside
the boxpotentially overlapping borders and other
page elements on the page. IE 6 (and earlier)
simply enlarges the box (borders and all) to

accommodate the larger content. Hidden hides
any content outside of the content area. Scroll
adds scroll bars to the element so a visitor can
scroll to read any content outside the content
areasort of like a mini-frame. Auto adds
scrollbars only when they're necessary to reveal
more content.

 Example: overflow: hidden;

position
Determines what type of positioning method a

browser uses when placing an element on the page.
 Values: static, relative, absolute, fixed. Static is

the normal browser modeone block-level item
stacked on top of the next with content flowing
from the top to the bottom of the screen.
Relative positions an element in relation to
where the element currently appears on the
pagein other words, it can offset the element
from its current position. Absolute takes an
element completely out of the page flow. Other
items don't see the absolute element and may
appear underneath it. It's used to position an
element in an exact place on the page, or to
place an element in an exact position relative to
a parent element that's positioned with absolute,
relative or fixed positioning. Fixed locks an
element on the page, so that when the page is
scrolled, the fixed element remains on the
screenmuch like HTML frames. Internet
Explorer 6 (and earlier) ignores the fixed option.

 Example: position: absolute;

Note: You usually use relative, absolute, and fixed
in conjunction with left, right, top, and bottom. See
Chapter 12 for the full details on positioning.

right
When used with absolute or fixed positioning

(Section 12.1), this property determines the position of
the right edge of the style relative to the right edge of its
closest positioned ancestor. If the styled element isn't
inside of any positioned tags, then the placement is
relative to the right edge of the browser window. You
can use this property to place a sidebar a set amount
from the right edge of the browser window. When used
with relative positioning, the placement is calculated
from the element's right edge (prior to positioning).

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages.

 Example: left: 5em;

Note: Internet Explorer 6 (and earlier) can have
problems when positioning an element using the right
property. See Section 12.1.4 for details.

10

cssref v1.0

top
Does the opposite of the bottom property (Section

A.1.1). In other words, when used with absolute or
fixed positioning, this property determines the position
of the top edge of the style relative to the top edge of its
closest positioned ancestor. If the styled element isn't
inside of any positioned tags, then the placement is
relative to the top edge of the browser window. You can
use this property to place a logo a set amount from the
top edge of the browser window. When used with
relative positioning, the placement is calculated from
the element's top edge (prior to positioning).

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages.

 Example: top: 5em;

visibility
Determines whether a Web browser displays the

element. Use this property to hide part of the content of
the page, such as a paragraph, headline, or <div> tag.
Unlike the display property's none valuewhich hides an
element and removes it from the flow of the pagethe
visibility property's hidden option doesn't remove the
element from the page flow. Instead, it just leaves an
empty hole where the element would have been. For
this reason, you most often use the visibility property
with absolutely positioned elements, which have
already been removed from the flow of the page.

Hiding an element doesn't do you much good unless
you can show it again. JavaScript programming is the
most common way to toggle the visibility property to
show and hide items on a page. You can also use the
:hover pseudo-class (Section 9.1) to change an
element's visibility property when a visitor hovers over
some part of the page.

 Values: visible, hidden. You can use the
collapse value to hide a row or column in a table
as well.

 Example: visibility: hidden;

width
Sets the width of the content area (the area of an

element's box that contains text, images, or other tags).
The amount of onscreen space actually dedicated to the
element may be much wider, since it includes the width
of the left and right margin, left and right padding, and
left and right borders. IE 6 (and earlier) handles
overflow situations differently than other browsers.
(See Section 7.5.2.)

 Values: Any valid CSS measurement unit, like
pixels, ems, or percentages. Percentages are
based on the containing element's width.

 Example: width: 250px;

z-index
Controls the layering of positioned elements. Only

applies to elements with a position property set to
absolute, relative, or fixed (Section 12.1). It determines

where on the Z-axis an element appears. If two
absolutely positioned elements overlap, the one with the
higher z-index appears to be on top.

 Values: An integer value, like 1, 2, or 10. You
can also use negative values, but different
browsers handle them differently. The larger the
number, the more "on top" the element appears.
An element with a z-index of 20 appears below
an element with a z-index of 100 (if the two
overlap). However, when the element is inside
another positioned element, it's "positioning
context" changes and it may not appear above
another elementno matter what its z-index value.
See Figure 12-6.

 Example: z-index: 12;

Tip: The values don't need be in exact integer order.
If element A has a z-index of 1, you don't have to set
element B's z-index to 2 to put it on top. You can use 5,
10, and so on to get the same effect, as long as it's a
bigger number. So, to make sure an element always
appears above other elements, simply give it a very
large value, like 10000.

A.7. Table Properties

There are a handful of CSS properties that relate
solely to HTML tables. Chapter 10 has complete
instructions on using CSS with tables.

border-collapse
Determines whether the borders around the cells of a

table are separated or collapsed. When they're
separated, browsers put a space of a couple of pixels
between each cell. Even if you eliminate this space by
setting the cellspacing attribute for the HTML <table>
tag to 0, browsers still display double borders. That is,
the bottom-border of one cell will appear above the top
border of the cell below causing a doubling of border
lines. Setting the border-collapse property to collapse
eliminates both the space between cells and this
doubling up of borderlines (Section 10.2.1). This
property works only when applied to a <table> tag.

 Values: collapse, separate
 Example: border-collapse: collapse;

border-spacing
Sets the amount of space between cells in a table. It

replaces the <table> tag's cell-spacing HTML attribute.
However, Internet Explorer doesn't understand the
border-spacing property, so it's best to continue to use
the cellspacing attribute in your <table> tags to
guarantee space between cells in all browsers.

11

cssref v1.0

Note: If you want to eliminate the space browsers

normally insert between cells, just set the border-
collapse property to collapse.

 Values: Two CSS length values. The first sets

the horizontal separation (the space on either
side of each cell) and the second sets the vertical
separation (the space separating the bottom of
one cell from the top of the one below it).

 Example: border-spacing: 0 10px;

caption-side
When applied to a table caption, this property

determines whether the caption appears at the top or
bottom of the table. (Since, according to HTML rules,
the <caption> tag must immediately follow the opening
<table> tag, a caption would normally appear at the top
of the table.)

 Values: top, bottom
 Example: caption-side: bottom;

Note: Unfortunately, this property has no effect in

any versions of Internet Explorer (as of this writing), so
it's safest to stick with the HTML equivalent: <caption
align="bottom"> or <caption align="top">.

empty-cells
Determines how a browser should display a table

cell that's completely empty, which in HTML would
look like this: <td></td>. The hide value prevents any
part of the cell from being displayed. Instead, only an
empty placeholder appears, so borders, background
colors, and background images don't show up in an
emptied cell. Apply this property to a style formatting
the <table> tag.

 Values: show, hide
 Example: empty-cells: show;

Note: The empty-cells property has no effect if the

border-spacing property is set to collapse.

table-layout
Controls how a Web browser draws a table, and can

slightly affect the speed at which the browser displays
it. The fixed setting forces the browser to render all
columns the same width as the columns in the first row,
which (for complicated technical reasons) draws tables
faster. The auto value is the normal "browser just do
your thing" value, so if you're happy with how quickly
your tables appear on a page, don't bother with this
property. If you use it, apply table-layout to a style
formatting the <table> tag.

 Values: auto, fixed
 Example: table-layout: fixed;

A.8. Miscellaneous Properties

CSS 2.1 offers a few additionaland sometimes
interesting properties. They let you enhance your Web
pages with special content and cursors, offer more
control over how a page prints, and so on.
(Unfortunately, browser understanding of these
properties is spotty at best.)

content
Specifies text that appears either before or after an

element. Use this property with the :after or :before
pseudo-elements. You can add an opening quotation
mark in front of quoted material and a closing quotation
after the quote. This property isn't supported by Internet
Explorer (not even IE 7 as of this writing), so its use is
limited.

 Values: Text inside of quotes "like this", the
keywords normal, open-quote, close-quote, no-
open-quote, no-close-quote. You can also use
the value of an HTML attribute. (See "Revealing
Links in Print" in Section 13.3.4 for an
example.)

 Examples: p.advert:before { content: "And now
a word from our sponsor…"; }

 a:after { content: " (" attr(href) ") "; }

Note: Adding text in this way (like the opening and
closing quote example) is called generated content.
Read a simple explanation of the generated content
phenomenon at
www.westciv.com/style_master/academy/css_tutorial/a
dvanced/generated_content.html. For a deeper
explanation, visit
www.w3.org/TR/CSS21/generate.html.

cursor
Lets you change the look of the mouse pointer when

it moves over a particular element. You can make a
question mark appear next to the cursor when someone
mouses over a link that provides more information on a
subject (like a word definition).

 Values: auto, default, crosshair, pointer, move,
e-resize, ne-resize, nw-resize, n-resize, se-resize,
sw-resize, s-resize, w-resize, text, wait, help,
progress. You can also use an URL value to use
your own graphic as a cursor (but see the Note
below).

 Example: cursor: help; cursor:
url(images/cursor.cur);

Note: Only Internet Explorer and Firefox recognize

URL cursor values, and only in Windows. For more
information, visit www.echoecho.com/csscursors.htm
and www.quirksmode.org/css/cursor.html.

12

http://www.westciv.com/style_master/academy/css_tutorial/advanced/generated_content.html
http://www.westciv.com/style_master/academy/css_tutorial/advanced/generated_content.html
http://www.w3.org/TR/CSS21/generate.html
http://www.echoecho.com/csscursors.htm
http://www.quirksmode.org/css/cursor.html

cssref v1.0

13

orphans
Specifies the minimum number of lines of text that

can be left at the bottom of a printed page. Suppose
you're printing your Web page on a laser printer, and a
fiveline paragraph is split between two pages, with just
one line at the bottom of page one, and the four
remaining lines at the top of page two. Because a single
line all by itself looks odd (sort of like a lost orphanget
it?), you can tell the browser to break a paragraph only
if at least, say, three lines are left on the bottom of the
page. (At this writing, only the Opera browser
understands this property.)

 Values: a number like 1, 2, 3, or 5.
 Example: orphans: 3;

page-break-after
Determines whether a page break (in printing)

occurs after a particular element. With it, you can make
sure that a particular paragraph is always the last item
to appear on a printed page.

 Values: auto, always, avoid, left, right. Auto
represents the normal value and lets the browser
determine when and how to break content across
printed pages. Always forces the element that
follows to appear at the top of a separate printed
page, and it's the only value that works
consistently across browsers. Avoid prevents a
page break after an element; it's a great way to
keep a headline with the paragraph that follows
it, but unfortunately, most browsers don't
understand it. Left and right determine whether
the element following appears on a left-or right-
handed page, which may force the browser to
print an extra empty page. But since no browsers
understand these values, don't worry about
wasting paper. Browsers treat left and right the
same as always.

 Example: page-break-after: always;

page-break-before
Works like page-break-after, except the page break

appears before the styled element, placing it at the top
of the next printed page. You can use this property to
make sure headlines for different sections of a long
Web page each appear at the top of a page.

 Values: same as page-break-after.
 Example: page-break-before: always;

page-break-inside
Prevents an element from being split across two

printed pages. If you want to keep a photo and its
caption together on a single page, wrap the photo and
caption text in a <div> tag, and then apply a style with
page-break-inside to that <div>. (At this writing, only
Opera understands this property.)

 Values: avoid
 Example: page-break-inside: avoid;

widows
The opposite of orphans (Section A.1.1), it specifies

the minimum number of lines that must appear at the
top of a printed page. Say the printer can manage to fit
four out of five lines of a paragraph at the bottom of a
page and has to move the last line to the top of the next
page. Since that line might look weird all by itself, use
widows to make the browser move at least two or three
(or whatever number of) lines together to the top of a
printed page. (Only Opera understands this property, so
it's of limited use.)

 Values: a number like 1, 2, 3 or 5.
 Example: widows: 3;

